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Anthropogenic activities are increasing ocean temperature and decreasing
ocean pH. Some coastal habitats are experiencing increases in organic
runoff, which when coupled with a loss of vegetated coastline can accelerate
reductions in seawater pH. Marine larvae that hatch in coastal habitats may
not have the ability to respond to elevated temperature and changes in
seawater pH. This study examined the response of Florida stone crab
(Menippe mercenaria) larvae to elevated temperature (30°C control and 32°C
treatment) and CO2-induced reductions in pH (8.05 pH control and 7.80 pH
treatment). We determined whether those singular and simultaneous stressors
affect larval vertical movement at two developmental stages. Geotactic
responses varied between larval stages. The direction and rate of the vertical
displacement of larvae were dependent on pH rather than temperature. Stage
III larvae swam upwards under ambient pH conditions, but swam down-
wards at a faster rate under reduced pH. There was no observable change
in the directional movement of Stage V larvae. The reversal in orientation
by Stage III larvae may limit larval transport in habitats that experience
reduced pH and could pose challenges for the northward dispersal of stone
crabs as coastal temperatures warm.
1. Introduction
Increasing atmospheric CO2 concentrations are warming the atmosphere and
the ocean, and are causing a decline in ocean pH. Ocean temperatures are
expected to increase by 2–4°C, and ocean pH is expected to decrease by 0.10–
0.41 units by the end of the century [1,2]. Additionally, some coastal habitats
are experiencing increased runoff and eutrophication, which amplifies pH
variability [3–9]. In combination, these stressors can affect the development, be-
haviour, growth and survival of marine species, particularly during sensitive
larval stages [10–12].

The distribution of most benthic marine populations is dependent on dis-
persal by planktonic larvae. Surface currents transport larvae away from
hatching sites, although some larvae (e.g. brachyuran crustaceans) are capable
of vertical migrations, which can adjust their horizontal transport when cur-
rents are depth stratified [13–19]. These vertical migrations are triggered by
responses to biotic cues, but also abiotic stimuli, such as gravity [14–16],
light, pressure [14,17,18] and pH [11]. Some marine species experience an
impaired ability to orient to specific stimuli during exposure to reduced pH.
For example, under reduced pH, hermit crabs struggle to locate prey [20] and
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Table 1. Mean daily (±s.d.) seawater carbonate chemistry, temperature and salinity. The treatment conditions were monitored for total alkalinity (AT) and
pHtotal during experimentation and pCO2 was derived from CO2SYS [33] (n = 52). Field samples (n = 10) were collected during the day between 08.00 and
12.00. Field samples were tested for AT and dissolved inorganic carbon (DIC), while the pHtotal and pCO2 were estimated using CO2SYS. The mean field DIC was
2104.0 µmol kg−1 ± 34.0. The change in the carbonate parameters between experimental treatment analyses and field sample analyses was the result of the
DIC analyzer malfunctioning during experimentation.

treatments temperature (°C) AT (µequiv kg
−1) pHtotal pCO2 (µatm) salinity

control 30.0 ± 0.2 2286.0 ± 36.7 8.05 ± 0.02 461.7 ± 35.5 37.7 ± 0.47

reduced pH 29.9 ± 0.3 2285.9 ± 34.7 7.78 ± 0.06 966.0 ± 157.9 37.7 ± 0.46

elevated temperature 31.9 ± 0.1 2282.6 ± 34.3 8.00 ± 0.02 571.7 ± 38.3 37.9 ± 0.50

reduced pH + elevated temperature 31.8 ± 0.2 2285.9 ± 35.1 7.74 ± 0.05 1137.3 ± 140.8 37.9 ± 0.51

field site 29.8 ± 0.4 2462.4 ± 28.8 8.04 ± 0.05 428.9 ± 72.6 34.9 ± 0.81
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shrimp display decreases in swimming ability [21]. Bra-
chyuran crustacean larvae, which often rely on exogenous
stimuli to direct vertical swimming, may be impacted by
stressors like ocean acidification and elevated temperature.

Here, we examine the impact of these two stressors on the
larval behaviour of the Florida stone crab,Menippe mercenaria.
The stone crab fishery occurs throughout the southeastern
United States and has an annual value of ∼$25–30 million
in Florida [22]. Since 2000, the annual stone crab harvest
has declined from 3.5 to 2.7 million pounds of claws per
year [23]. Stone crab larvae take 20–30 days to complete
development within coastal habitats [22–26]. Early-stage
stone crab larvae exhibit vertical swimming behaviours in
response to gravity, hydrostatic pressure and light that pro-
mote a relatively shallower depth distribution, whereas late-
stage larvae reverse their vertical swimming response to the
aforementioned cues resulting in a deeper distribution [26].

Land-use changes in Florida are increasing runoff and
accelerating acidification in some coastal habitats (Tampa
Bay ranges from 7.90 to 8.40; [9]). Some stone crab habitats
(e.g. the Florida Keys) have also experienced an increase in
temperature over the past century, which is problematic for
a species already living close to its upper thermal limit [27].
Reductions in pH could disrupt enzymes and hormones
necessary for moulting, whereas temperature increases can
accelerate metabolism and growth, and destabilize proteins
and enzymes [28–32]. Although stone crabs live in environ-
ments that experience variable temperature and carbonate
chemistry (28.2–31.8°C; pCO2: 320–596 µatm during this
study), their larvae are sensitive to pH, as a single stressor,
which reduced hatching and survivorship by 28% and 37%,
respectively [12,25]. Simultaneous exposure to reduced pH
and elevated temperature was even more drastic, with 80%
larval mortality [12].

Our study is the first to test the hypothesis that elevated
temperature and reduced pH conditions will alter the vertical
swimming behaviour of larval crustaceans using the Florida
stone crab as a model example.
2. Material and methods
(a) Experimental design
Ovigerous stone crabs (n = 25) were collected by the Florida Fish
and Wildlife Conservation Commission using commercial traps
near Pavilion Key (25° 69.79 N, 85° 35.51 W) during the
summer of 2015. Crabs were maintained in control conditions
until hatching. The experiment measured changes in larval verti-
cal swimming behaviour after rearing larvae in the treatment
conditions (table 1). Temperature was set at 30°C (control) and
32°C (elevated). The control was based on the Long Key
C-MAN station in Florida Bay and corresponded to the mean
summer temperature at the collection site [34]. The elevated
temperature was based on the lower end of the sea-surface
projections for 2100 (RCP-8.5) and corresponded to the upper
historical mean summer sea-surface temperature (National
Buoy Center: LONF1) within the Florida Keys [1,2]. The control
pH (8.05) was based on pH at the collection site (table 1). The
reduced pH treatment targeted conditions projected by the
IPCC RCP-8.5 model for 2100 (pH 7.80; [1]).

Seawater carbonate chemistry manipulations adhered to ocean
acidification best practices [12,35]. All experimental chambers
were monitored for total alkalinity (AT) and pHtotal. To avoid
shocking the larvae, temperature and pH were gradually adjusted
to the desired treatment over the first approximately 5 days of each
experiment, which represents approximately 20% of the larval
duration [12]. Stage I and II larvae never experienced the full
experimental treatment conditions and were not used in the exper-
iments. Experiments were performed on Stage III and V larvae to
make comparisons to previously published work [26,36]. Stage IV
larvae were not used in the experiments because of logistical chal-
lenges associated with performing multiple behavioural
experiments on subsequent larval stages throughout their devel-
opment. Larvae were reared en masse following procedures
described in [12]. Experiments used larvae from independent
broods (i.e. replicates). Each larval rearing chamber was indepen-
dently controlled for temperature in a digitally controlled water
bath that was independent from the other treatment combinations.
Details of the experimental system, seawater manipulation and be-
havioural experiments are provided in the electronic
supplementary material.
(b) Geotaxis and larval swimming
The larval (n = 10 per treatment per brood) geotactic responses
from replicate broods (Stage III = 7 broods; Stage V = 5 broods)
were monitored for directional swimming among the treatments,
according to established methods [26]. Larvae were randomly
selected and checked for developmental stage prior to exper-
imentation. Larval vertical movements were determined using
a closed-circuit video system (Panasonic BP334 camera, Model-
AG 1980 recorder) illuminated with far-red light (775 nm)
[26,36,37]. An individual larva was pipetted into the centre of a
clear acrylic tube (16 cm × 3 cm diameter), which was oriented
horizontally in darkness. The tube was gently rotated 90° verti-
cally to minimize fluid movement. Directional movements of
individual larva were recorded throughout the middle 10 cm of
the chamber until each larva moved out of the field of view,
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Figure 1. Box plot of the per cent of (a) Stage III and (b) Stage V larvae that
swam down (%) among treatments. Different letters above the boxes indicate
significant differences. Larvae that maintained the position upon stimulation
(i.e. neutral swimming) were included in the upward responses. All trials
were conducted in darkness. These data represent the distribution of averages
within broods.

Table 2. Results of the linear mixed-effect analysis for the Stage III and V
swimming speeds with brood as a random factor, which was nested within
the treatment. Neutral responses were included in the analyses but only
represented 2–4% of the total response in Stage III larvae and 0% of the
response in Stage V larvae. Larvae that moved up were scored as positive
swimming speeds, and larvae that moved down were scored as negative
swimming speeds in the analysis.

source of variation d.f. t p

Stage III: swimming speed

temperature 18 −1.39 0.17

reduced pH 18 −5.71 <0.001

temperature + reduced pH 18 −6.07 <0.001

Stage V: swimming speed

temperature 15 −0.58 0.56

reduced pH 15 −0.68 0.50

temperature + reduced pH 15 −0.65 0.52
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which on average ranged from 6 to 10 s. Larvae were only used
once in any one of the treatments and discarded after experimen-
tation. Larvae displaying a net upward response were recorded
as ‘negatively geotactic’. A downward response was defined as
a net displacement toward the chamber bottom. Larvae with
no upward or downward displacement (after 10 s) were
recorded as neutral. A permutation test was performed to test
for differences in the geotaxic movement, with treatment as the
main effect and brood as the blocking factor [38]. A mixed-effects
model was used to test for differences among treatments using
the individual larval swimming speeds. The individual larval
swimming speed data were analysed in the model using positive
and negative values, which represented upward or downward
movements, respectively. The mixed-effects model was per-
formed with treatment as a fixed factor and brood as a random
effect nested within the treatment. All statistical analyses were
performed using R v.3.6 [39].
3. Results
(a) Geotaxis
Stage III larvae raised in reduced pH showed a significant
change in average swimming direction (temperature: F1,6 = 0.0,
p= 1.0; pH: F1,6 = 85.5, p< 0.001). There was no statistically
detectable interaction among the treatments (F1,6 = 0.29, p=
0.59); however, there was a marginally significant brood effect
(F6,18 = 2.9, p = 0.03). The brood effect was driven by one
brood’s response in the reduced pH and elevated tempera-
ture treatment, and our low sample size (electronic
supplementary material, figure S1). A larger proportion of
Stage III larvae maintained their position or swam upward
in the control pH treatments compared with individuals
raised in low pH, which mostly moved downward (figure 1a).
The experimental treatments did not have a significant effect
on Stage V geotaxis (figure 1b; p > 0.05). Neutral responses in
Stage III larvae ranged from 2 to 4% across treatments,
whereas no Stage V larvae exhibited a neutral response
(electronic supplementary material, table S1).

(b) Larval swimming
Stage III larvae exposed to reduced pH treatments moved
downward significantly faster than larvae in the other treat-
ments ( p < 0.001; table 2 and figure 2; electronic
supplementary material, figures S2 and S3). There was no
statistically detectable effect of treatment in the Stage V
swimming speeds ( p > 0.05; table 2).
4. Discussion
Stone crab larvae are known to exhibit vertical swimming
behaviours to stimuli like gravity, pressure and light that
promote depth regulation and facilitate dispersal [26].
Here, we show that stone crab larval swimming behaviours
are affected by reduced pH. Our results suggest that low
pH may change the vertical movement direction in some
larval stages, which could alter dispersal in highly stratified
waters.

Within our controls, a negative geotaxis response (i.e.
upward swimming) in stone crab larvae is consistent with
other crab species including Callinectes sapidus [40], Rhithropa-
nopeus harrisii [37,41] and Hemigrapsus sanguineus [36] and
positions newly hatched larvae in relatively shallow
depths [26]. Some crustacean species (e.g. H. sanguineus and
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Figure 2. Box plot of the larval swimming speeds (cm s−1) for (a) Stage III and (b) Stage V larvae among treatments. Different letters above the bars indicate
significant differences. Positive values represent upward movement and negative values represent downward movement. All trials were conducted in darkness. The
open dots represent the distribution of individual larval swimming speeds within each treatment.
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M. mercenaria) exhibit a reversal in their geotactic response
during later larval stages, which has implications for
larval transport in estuarine and coastal environments
[13,14,26,36]. Stage III larvae exposed to only reduced pH
showed the opposite directional response, indicating
that pH but not temperature was interfering with vertical
movement. The Stage III downward swimming speeds in
reduced pH were slower than passively sinking individuals
but faster than active larvae in ambient pH, indicating that
larvae were controlling their descent or eliciting avoidance
behaviour by attempting to move away from the reduced
pH conditions. Reduced pH did not result in morphological
abnormalities, changes in calcification or weight in larval
stone crabs, suggesting that the descent was not related to
factors impacting drag or buoyancy [12]. We acknowledge
that our design could not account for fluid movement
within the experimental chamber; therefore, some larvae
may have been ‘stuck’ in boundary layers after rotation.
However, given that most larvae remained close to the
chamber’s central axis, it is unlikely that chamber effects
impacted larval movements.
The physiological mechanisms contributing to the
change in the swimming direction were beyond the
scope of this study; however, reduced pH acidifies
crustacean haemolymph, which may have contributed to
the change in swimming behaviour by altering enzymes
and metabolism [42]. The inability to regulate acid–base
balance under low pH has been shown to change swim-
ming orientation in some coral-reef fish larvae [43–45].
The change in the directional response among Stage III
larvae could also be the result of low pH impairing an
alternative physiological mechanism that controls orien-
tation. Orientation in many invertebrates is controlled by
a calcareous statocyst, which is a sensory organ that
forms during ontogeny [16,46]. The movement of the stato-
lith triggers hairs that line the statocyst chamber, which
provide sensory feedback to help the animal maintain
equilibrium [47]. The observed change in swimming direc-
tion in Stage III larvae could be the result of statocyst
degradation under reduced pH. Larval squid raised in
reduced pH were reported to have abnormally shaped
statoliths with the reduced surface area [48].
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The change in stone crab larval swimming represents a
short-term behavioural response to environmental stressors
and may have implications for larval dispersal. The direc-
tional change in swimming could result in less precise
depth regulation among Stage III larvae, resulting in a rela-
tively deeper distribution, especially since downward
vertical movements were faster in reduced pH. A deeper dis-
tribution in low pH could position individuals in slower
currents restricting horizontal movement [13]. Consequently,
these changes in vertical movement could keep larvae close
to coastal habitats where predation is high and environ-
mental conditions are not favourable for completing larval
development. We caution that stone crab larval depth distri-
butions should be confirmed via field sampling in habitats
with different pH conditions.

Our study showed an ontogenetic shift in geotaxis, with
Stage V larvae exhibiting behaviours promoting a deeper dis-
tribution, regardless of treatment. One possibility for
observing no effect on Stage V larvae could be that this
stage prefers to swim downward in ambient conditions
[26]. Stone crab larvae can regulate their depth by kinetic
responses to pressure changes [26]. By controlling their des-
cent, the magnitude of pressure change experienced by the
individual is less abrupt, allowing larvae to adjust their loco-
motor activity accordingly. The observed Stage V response
could be the result of a controlled descent coupled with a
positive barokinetic response, which may not be as sensitive
to changes in pH as Stage III larvae.

Previous laboratory experiments demonstrated that elev-
ated seawater temperature can affect brachyuran crustacean
larval swimming by stimulating behaviours to avoid
warmer surface waters [49]. Temperatures above an individ-
ual’s upper limit can evoke a negative phototaxis, a positive
geotaxis or inactivity, which all result in sinking [50]. Our
study did not show any significant effects of temperature
on larval swimming, suggesting some level of tolerance in
larval stone crabs. The elevated temperature used in our
study was conservative, based on the lower end of the sea-
surface projections for 2100, and corresponded to the upper
historical mean summer temperature for the study site. The
temperature used may not have been elevated enough to
elicit a measurable effect on larval movement.

Our results suggest that reduced pH may result in a rela-
tively deeper distribution of Stage III stone crab larvae, which
could reduce their short-term (days) transport capabilities by
preventing their exposure to rapidly dispersing surface cur-
rents. Larval swimming responses to exogenous stimuli
(e.g. gravity or light) mediate transport in coastal habitats
and form the basis for conceptual models that describe how
negatively buoyant crustacean larvae regulate their depth
[14,16,50,51]. A change in the depth distribution of stone
crab larvae may reduce dispersal and limit transport when
exposed to reduced pH. These results have implications for
the capacity of the species to adjust its northward geographi-
cal range as the oceans warm. If less precise depth regulation
results in larvae being retained closer to near shore habitats,
then individuals may be subject to greater predation pressure
[52] and thermal extremes in shallower environments [12], all
of which could further reduce larval supply [12]. To consider
other aspects influencing dispersal, future studies should test
larval responses to changes in light and pressure stimuli
when exposed to reduced pH and elevated temperature
conditions.
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